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Abstract

Most parallel algorithms for VLSI CAD proposed to date have one important drawback:

they work efficiently only on machines that they were designed for. As a result, algorithms

designed to date are dependent on the architecture for which they are developed and do not
port easily to other parallel architectures.

This paper describes a new project under way to address this problem. We are develop-
ing a Portable object-oriented parallel environment for CAD algorithms (ProperCAD). The

objectives of this research are two-fold. (1) To develop new parallel algorithms that run in a

portable object-oriented environment. We accomplish this in two stages. First, we are develop-

ing CAD algorithms using a general purpose platform for portable parallel programming called
CHARM [6, 12] developed at the University of Illinois. Second, we are concurrently developing

a C+ + environment that is truly object-oriented and specialized for CAD applications. (2) To

design the parallel algorithms around a good sequential algorithm with a well-defined parallel-

sequential interface. This will permit the parallel algorithm to benefit from future developments
in sequential algorithms.

We describe one CAD application that has been implemented as part of the ProperCAD
project: flat VLSI circuit extraction. The algorithm, its implementation, and its performance

on a range of parallel machines are discussed in detail. It currently runs on an Encore Multimax,

a Sequent Symmetry, Intel iPSC/2 and i860 hypercubes, a NCUBE 2 hypercube, and a network

of Sun Sparc workstations. We also provide performance data for other applications that have

been developed: namely test pattern generation for sequential circuits, parallel logic synthesis
and standard cell placement.

1 Introduction

In view of the increasing complexity of VLSI circuits of the future, the requirements on VLSI CAD

tools will continuously increase. Parallel processing for CAD applications is becoming gradually

recognized as a popular vehicle to support the increasing computing requirements of future CAD

tools. Recent research on parallel CAD applications have been reported for a wide variety of

*This research was supported in part by the National Aeronautics and Space Administration under grant NAG
1-613, and in part by the Semiconductor Research Corporation under grant SRC 91-DP-109.





applicationssuchasplacement[2, 13,19,20], floor planning [11], circuit extraction [3, 4, 14, 25],

test generation and fault simulation [17], etc. Parallel processing for VLSI CAD has become a

reality in industry as well. Hardware vendors such as Solbourne have already announced products

with multiple CPUs in a single workstation. Software CAD vendors such as Mentor have announced

products such as CHECKMATE, a parallel design rule checker using multiprocessing, to accelerate

a single job. A major limitation with almost all such previous work is that the parallel algorithms

have been targeted to run on specific machines like an Intel iPSC/2 hypercube or an Encore shared

memory multiprocessor. Such work, although interesting, is not usable by the rest of the VLSI

CAD community since the algorithms are not portable to other machines.

A second serious problem also presents itself in the design of parallel algorithms. The software

development cycle for parallel algorithms is considerably longer than for sequential algorithms. This

has two important implications. The first is that they are considerably more costly to develop than

sequential algorithms. This is only exacerbated by tile lack of portability across parallel machines.

The second implication is a more pragmatic one. Given the fast pace of progress ill tile development

and improvement of sequential algorithms for CAD applications, for a given application, sequential

algorithms frequently outperform parallel algorithms due to the longer development time of the

latter. For example, this is evident in parallel test pattern generation. The latest version of HITEC

[16], a uniprocessor test pattern generation program for sequential circuits is already comparable

in performance and is slightly better in quality of results than a recent parallel algorithm for test

pattern generation [17].

A related issue in the development of parallel algorithms is that certain approaches are inherently

parallelizable and others are extremely hard to parallelize. More often than not, the tradeoff

between these two approaches is in the quality of results. Cell placement is a good example.

The quadrisection algorithm [24] is easily parallelizable and is significantly faster than algorithms

based on simulated annealing. However, it cannot produce results comparable to TimberWolf ['22], a

sequential program that uses simulated annealing (and a host of related tricks) to do cell placement.

An interesting possibility would be to use a hybrid of these two (and possibly other) techniques,

where, for example, quadrisection could be used for decomposition of the layout area into regions,

and TimberWolf wouhl be used for placement in a given region. However, to experiment with such





techniques, it should not be necessary to rewrite the software entirely. Any attempt to rewrite

TimberWolf [22] will not only be extremely time consuming, it is also unlikely to be comparable

in performance. However, if it is possible to decouple the parallel and sequential algorithms and

provide a well defined interface between the two, it may be practical to experiment with hybrid

schemes such as these.

It would be presumptuous to assume that it will be trivial to interface the parallel algorithm

with the sequential algorithm as described above. For this to be practical, it is imperative that

sequential algorithms be written in a modular fashion. Fortunately, object-oriented programming

in C++ (or even disciplined C programming) goes a long way in realizing this requirement. Many

CAD vendors are already rewriting many of their well-established CAD applications using such

disciplined, modular programming methods due to the benefits offered in program design and

maintenance.

The most important questions that need to be addressed in the development of parallel algo-

rithms are therefore: "How can we design parallel algorithms that are truly portable across parallel

machines?", "How can we exploit good sequential algorithms in the design of parallel algorithms '',

and "How can parallel algorithms keep pace with future developments in sequential algorithms?"

These are the main objectives of a new project to be discussed in this paper.

CHARM [6, 12] is a run-time support system for portable parallel programming developed

at the University of Illinois. It currently runs on a wide range of parallel machines including

shared memory machines, message passing multiprocessors and a network of workstations. We are

using CHARM to build a prototype of a Portable object-oriented parallel environment for CAD

applications (ProperCAD). Since inception, the ProperCAD project (see Figure 1) is designed to

be completed in two phases. In the first phase, we are designing portable parallel algorithms for a

large set of CAD applications using CHARM. To date, algorithms for flat extraction, test generation

for sequential circuits [18] and combinational logic synthesis [5] and standard cell placement have

been designed and implemented. New algorithms for global routing, fault simulation and behavioral

simulation are currently under development.

The second phase of the project is expected to take a couple of years. It will involve the design

and implementation of a run-time support system for portable parallel programming in C++. This





system,althoughinspiredby CHARM, will be tailoredspecificallyfor CAD applications.This will

maketheprogrammingenvironmenttruly object-orientedandwill supportfeatureslike inheritance

and classes. The ProperCAD applications will then be rewritten and ported onto the new C++

platform. The new platform will make it possible to adapt and integrate tile parallel applications

with software developed by companies like Cadence and Mentor, which are increasingly using C++

as a standard for their software development. Recall that reuse of sequential code is one of the

primary objectives of the ProperCAD project. In the second phase of this project, we will also

develop a library for the rapid prototyping and development of additional parallel (,_lAD applications.

The library will essentially be a parallel data manager that supports data distribution abstractions

and primitives designed for an integrated parallel CAD environment. The library can be viewed as

as being analagous to the Oct tools [9] distributed by the University of California at Berkeley for

uniprocessor CAD applications.

The CHARM system was chosen as the platform for two significant reasons. The first is that it is

a working prototype of a run time support system that offers true portability of parallel applications

across MIMD machines. Second, although not truly object-oriented, it supports an object-oriented

style of programming. This will make porting of the CAD applications to C++ much easier. We

discribe the CHARM system briefly in Section 2.

In Section 3, we discuss how flat circuit extraction is expressed as an example of the use of

the programming paradigm supported by the ProperCAD environment. The algorithm for circuit

extraction presented in this paper has three significant contributions: (1) It is portable across

MIMD architectures. (2) It is built around an existing sequential circuit extractor using a well-

defined interface. This enables it to benefit from future improvements in the sequential algorithms

for circuit extraction. (3) Unlike previous approaches to parallel circuit extraction, it uses an

asynchronous coarse-grained data-flow model of execution. This is instrumental in rendering the

parallel algorithm scalable on all the target machines. Contributions (2) and (3) together also

permit good load balancing and high processor utilization.
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Figure 1: A high-level view of the ProperCAD project currently under development using the

CHARM parallel programming environment. We list the CAD applications under development
above.





2 The Parallel Programming Model

CttARM is a run time support system for portable parallel programming [6]. It abstracts away

all machine dependent features away from an application program and provides a uniform set of

primitives that can be used by the application to render their program machine independent. Fea-

tures like dynamic process creation, mapping of processes to processors, dynamic load distribution

and load balancing, scheduling, interprocess communication, are provided by the kernel. These are

implemented in the most efficient manner possible on each of the machines that the kernel runs on.

These features often complicate the user application considerably. CHARM helps the programmer

separate these concerns.

The CHARM kernel supports a message-driven style of execution. Conceptually, it maintains a

pool of messages that represent work. The application program can create processes dynamically

by creating a message that represents a seed for a new dynamically created object. 1 Information

can be exchanged between these objects also via messages. When a message is created it is put in

the work pool. The messages in tile work pool are distributed (and periodically balanced) across

the available processors by the kernel. The kernel services messages in the pool until no more are

available. Quiescence is detected; the programmer may take necessary action at this point (for

example, printing results).

A CHARM program comprises a set of object definitions. Each object definition has a set of

entry points which have C-code associated with them (see Figure 6 for an outline of tile object for

circuit extraction). Instances of these object definitions may be created dynamically at run time. 2.

Messages may be sent to these objects at one of its entry points, and the servicing of a message

entails executing the code associated with the entry point sequentially. No interrupts or blocking

(e.g. for synchronous receives) are possible within a code block associated with an entry point.

Only one instance of a special object called the main object is created. It has special entry points

for initialization and detection of quiescence. These do not have messages sent to theln unlike

normal entry t)oints. The initialization entry point performs data and object initialization (luring

1An object is created when this message is serviced.

2These objects are similar to actors [1], a type of concurrent object. Wegner [26] categorizes actors to be active

imperative objects. Note, however, that features like inheritance are not supported by CHARM.
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startup. The quiescenceentry point is optional; it permits the user to provide tile action to be

takenupondetectionof quiescence.If it is absent,tile programterminates.

CHARM also provides a special type of object called a branch office. Orze instance of the

branch office object is created per processor. As with the main object, branches are initialized

automatically on the local processors by executing code associated with an lnit entry point. Both

types of objects permit the declaration of persistent data that is visible only when executing any

code associated with the object (or branch). Both types of objects also permit the declaration

of procedures or functions as part of its definition. The functions in an object are private to the

object, whereas the functions in a branch office may be invoked by other objects. Branch office

objects are useful in providing data and program abstraction and have a concurrent object-like

behavior. For example, the access to distributed data can be managed by branch office objects.

A program may comprise several branch offices, each of which manages a different complex data

structure (like a circuit, BDDs, etc.). An example of a branch office object definition is provided

in Figure 2.

Another interesting feature of the CHARM kernel is conditional packing. The program definition

also includes routines for packing messages into contiguous buffers and unpacking tlmm into a

representation used by the program. A pair of such routines are provided for each message type in

the program for which packing/unpacking is necessary. These are used by the CHARM kernel on

nonshared memory machines when it is necessary for a message to cross process boundaries. Note

that for shared memory machines packing is not necessary. Hence, the algorithm runs efficiently

on shard memory machines as well.

Other features provided by CHARM are beyond the scope of this paper. Only features that are

important to the ensuing sections are discussed above. Further details may be found in [6].

The primary objective of a CHARM program is to create a large number of messages represent-

ing parallel work. Typically, this is done by decomposing the problem hierarchically into smaller

and smaller subproblems which can be evaluated in parallel, until a threshold is reached. This

threshold is user defined, and is used to indicate that subproblems smaller than the threshold are

to be evaluated sequentially. Ideally, the threshold determines the point at which it is cheaper to

solve a subproblem sequentially in preference to decomposing it further into parallel subcoinpo-





nents. Determining this threshold accurately is not necessary as long as sufficiently large number

of messages are created each of which represents a reasonable amount of work (e.g. > 50 ms).

The more the messages available to the kernel, the better its capability to perform dynamic load

balancing. The problem decomposition is thus independent of the number of processors available.

CHARM has been ported to a variety of shared memory and nonshared memory machines

including the Encore Multimax, the Sequent Symmetry, the Alliant FX/8, the Intel iPSC/2 and

i860 hypercubes, the NCUBE 2 hypercube, and a network of Sun workstations. It is currently

being ported to the BBN TC2000 Butterfly multiprocessor. Four portable implementations of the

CHARM kernel have been developed so far, one for shared memory machines, one for nonshared

memory machines, one for NUMA type machines, and one for a network of workstations. Every

time a new parallel machine is announced, the kernel can be ported to the new machine with

relatively tittle effort. 3

3 VLSI Circuit Extraction

VLSI circuit layouts are typically described as a collection of rectangles in different mask levels. The

problem of circuit extraction is to take such a layout and determine tile circuit connectivity, and

obtain estimates for various electrical parameters such as resistance of lines, capacitances of nodes

and dimensions of devices. The circuit extraction problem has two components: netlist extraction

and parameter extraction. The first component involves determination of the electrically connected

regions (called nets). To do this, boolean task manipulations are performed on different layers to

derive new layers, as specified in a technology file. For example, in CMOS technology, N-type

transistors are obtained by intersecting poly, diffusion and pwell layers, whereas P-type transistors

are obtained by intersecting poly, diffusion and complement of pwell layers. A new diffusion layer

is obtained by intersecting the old layer with the complement of poly.

The rectangles in the device layers are grouped into maximally connected groups, which form

the devices. The rectangles in the other layers are grouped into maximally electrically connected

sets, which form the nets. The electrical connectivity information is also provided in a technology

aThis is true unless the architecture of the new machine is radically different to existing architectures. In this

case, a new implementation of the kernel best suited to the architecture will be developed.





file as mentioned earlier. This gives the layers that electrically connect on overlap. For example, in

CMOS technology, the metal and contact layers electrically connect on overlap, so do the diffusion

and contact layers.

The parameter extraction component involves device size extraction, parasitic capacitance ex-

traction and resistance extraction of nets. Different models for parameter extraction with varying

accuracy and computational requirements have been proposed. The more accurate the model, the

more computation intensive it becomes. The HPEX model [23] is used for the circuit extraction

algorithm in this paper. For reasons of brevity, we do not discuss it further here.

Sequential circuit extraction is a well studied problem. Several sequential circuit extractors

of varying speed and accuracy already exist [7, 8, 10, 15, 21, 23]. Parallel algorithms for circuit

extraction have also been recently proposed [3, 4, 14, 25]. These algorithnls perform parallel circuit

extraction in several phases, including a data distribution phase, a geometric extraction phase,

a merge phase, a device extraction phase and a parameter extraction phase. Such approaches

involve synchronization at the start of each phase of the execution. For example, it is necessary, to

uniquely determine tile nets and transistors before proceeding to the parameter extraction phase.

This reduces the processor utilization, especially on nonshared memory machines.

To improve the load balancing, two schemes were proposed for data distribution: area-based

partitioning [3] and point-based partitioning [4]. The former partitions the circuit into different

areas each of which was assigned to a processor which performed local netlist and transistor extrac-

tion for its region. This can result in load imbalance if certain areas of the circuit are denser than

others. This drawback is addressed by a point-based partitioning scheme which which partitions

the circuit so as to approximately assign an equal number of rectangles to each processor. This

is costlier and more complicated than the area-based scheme, but yields better results for circuits

that do not have its rectangles evenly distributed. In the final phase, the complete nets are also

distributed across the available processors for load balancing reasons. These load balancing schemes

adopted were different for shared memory [4] and message passing machines [31.

The ProperCAD approach requires us to design programs that are not tailored to a particular

type of architecture. It also encourages the use of a coarse-grained data-flow style of execution where

a operation can be executed as soon as the data necessary to execute it is available. In parallel





circuit extraction,weadopt a hierarchicalapproachto decomposition.The circuit is partitioned

into severalregionsandeachregionis assignedto a processor.(Thedetailsof the datadistribution

areprovidedin Section3.1.) A sequential algorithm for local geometric extraction is then run on

each the regions to determine the nets and transistors in that region. The nets and the transistors

touching a border of the region they belong to are deemed to be incomplete. Incomplete nets and

transistors are subject to a merge algorithm, whereas local nets and transistors are available for

processing using a sequential algorithm for parameter extraction.

The merge algorithm proceeds in a hierarchical manner where at each stage two adjacent re-

gions are merged. Following every stage of the merge algorithm, nets and transistors that become

complete are available for parameter extraction. Nets that are available for parameter extraction

are load balanced as and when they become complete, to ensure maximum utilization of processors.

As can be seen in the above brief description of parallel circuit extraction, the geometric extrac-

tion on each region as well as the parameter extraction are performed using a sequential algorithm.

It is easy to see that the best sequential algorithm can be used fox" this purpose. The focus of the

parallel algorithm is now simply that of (1) decomposing of the problem into subproblems, and

(2) merging these subproblems together.

However, how can the overhead of parallelization be kept in check? To see this, consider this

simple argument. Based on a property of trees, for a branching factor >_ 2, the number of leaves in

a tree is always greater than the number of internal nodes. If it is possible to ensure that the work

done at a leaf node in a problem decomposition tree is atleast 10 times the work done at an internal

node, the work done at the leaf nodes of the decomposition will dominate the execution time (>

90%). Thus, for circuit extraction, if we can conform to this rough criterion for decomposition, by

calling the best available sequential algorithm for geometric extraction and parameter extraction,

the total overhead of the parallel algorithm can be bounded to within 10% of the best sequential

algorithm.

The above argument has been simplified somewhat for ease of explanation. However, the

conclusion is still valid. We demonstrate this in Section 3.6 where we discuss the performance

of the parallel circuit extraction algorithm. In the following discussion, we describe the different

phases of circuit extraction in more detail and how our algorithm avoids synchronization between

10





readonly int grainstze;

branch office RectangleManager {

HashTableEntry data-distribution[M ax HashSize] ;
int initmsgcount;

LocalPartitionTree mypartition;

entry Init:

Compute the circuit partitioning to determine which

processor gets which region. The grainsize

determines the depth of the recursive partitioning

entry ReceivePartition: (message InitRectangles *msg)
Receive and insert received rectangles into local partition tree

entry ReceiveRectLoad: (message LoadMsg *msg)

Receive the current rectangle load on other processors

entry SendRectangles: (message SendRequest *msg)

Send some of local rectangles to processors with less load

}

RequestRectangles( region )

Continue(region, decompose)

/* other functions visible to other objects */

} /* RectangleManager */

Figure 2: The branch office object for data distribution of rectangles.

these phases.

3.1 Data Distribution

In order to effect proper load distribution for parallel circuit extraction, it is important to ensure

balanced data distribution. This needs to be accomplished with minimum overhead during data

distribution, and at the same time, it must not complicate the merge phase of the circuit algorithm

which combines the results computed for each of the partitions of the circuit, as was the case in

the point-based partitioning in tile PACE algorithm [4].

The distribution of rectangles is iinplemented using the branch office object outlined in Figure

11
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Figure 3: A simple example illustrating tile data distribution for 4 processors. Note that tile

number of rectangles in an region is smaller than the sum of the rectangles in its 2 subregions since

border rectangles are given to both subregions.

2. It also provides access routines to the distributed data. These routines are used as necessary

by the dynamically created objects in the system. In Figure 2, the C-code associated with the

Init entry point is executed on every processor upon creation of the branch office. A main object

reads in the circuit description and partitions the rectangles area-wise into n partitions, where n

is the number of available processors. The partitions are sent to the respective processors to the

ReceivePartition entry point. The rectangles are locally partitioned further based on a user-defined

threshold and the local load is broadcast to tile ReceiveRectLoad entry point of the sibling branch

offices on the other processors. The branch offices then determine the best distribution of the local

partitions across the available processors. Some of the processors with surplus rectangles tag some

12





of their local regionsasthoseto beprocessedby otherprocessors.Nomovementof rectanglestakes

placeat this point. Wediscusshowthis is accomplishedbelowin moredetail.

Initially, the circuit is partitioned usingan area-basedpartitioning schemeso as to assigna

regionof the circuit to everyprocessor.The rectanglescomprisingthe circuit from a file are read

in andsent to the processorowningthe circuit partitions to whichthey belong.A processorwill

alsoget all the rectanglesthat toucha borderof the circuit regionit owns. Theserectanglesare

sentin several'rectangle'messagesto overlapthe processingof theserectangleswith the reading

in of the input.

Uponinitialization, oneachprocessor,a hashtable is createdto store the data distribution.

This tableis usedto storeall the nodesresultingfromthe initial area-partitioningnodes,together

with local nodesresultingfrom the localpoint-basedpartitioning in the parallelcircuit partition

tree(seeFigure3). Eachprocessoralsoinitializetwo counts:a countof the numberof 'rectangle'

messagesit expectsto receive(init-rnsg-count= 1 ) and a count of the number of messages it expects

to receive from the other processors indicating the local point-based distribution on the respective

processors: (rect-load-count = num-processors -1). Every message except the last sent to the

processors as the circuit is being read in carries a send-count field = zero. In the last message,

however, the send-count field is set to number of messages sent + 1. Upon receipt of a message,

a processor increments its init-msg-count by 1 and decrements it by send-count. This ensures that

init-msg-count is zero if and only if all the messages have arrived, irrespective of the order of arrival.

The use of rect-load-count is described below.

As and when the messages are received, the rectangles in the message are inserted into a

partition tree. The root of the partition tree on every processor is the entire region owned by the

processor. Initially, the root of the tree is the only node in the tree. Rectangles are only stored

at the leaf nodes of this tree. When the number of rectangles at a leaf node L of the tree exceed

a user defined limit (called point grain size), the region represented by L is split into two. Two

leaf nodes Ll and L2 are created as children of L, and the rectangles stored at L are distributed

between L1 and L2 (the rectangles on the border are given to both regions). Thus. when all the

rectangles from the main process have been received and processed, every leaf node has <_ point

grain size rectangles. One triple ( region, penum, rectangle-list) for every node in the partition tree

13





is storedin the localdata-distributionhashtable. (The centerof the regionis usedasthe key to

indexthe hashtable.). This constitutesthe local phase of data distribution.

Once all the rectangles bound for a processor p have been received and processed, a message

containing the number of rectangles owned by p is broadcast to the other processors. This number

typically exceeds the number of rectangles received when the circuit was read in because it ac-

counts for the duplication of "border" rectangles. Note that no rectangles are sent across processor

boundaries at this time. Each processor will receive num-processors -1 such messages. The local

rect-load-count field is used to check the arrival of all such messages at a given processor. When all

these messages arrive, processors having more rectangles than tlle average assign some leaf regions

to lean processors. This is done by accessing the local hash table and changing the penum field

in the triple (region, penum, rectangle-list) appropriately. The rectangles are not sent to the lean

processors at this stage. Moreover, Care is taken to ensure that several surplus processors do not all

assign rectangles to a same lean processor but distribute it across the lean processors uniformly 4.

After a processor receives its rectangles, creates its local partition tree, and broadcasts the

number of rectangles to other processors, it is ready to begin the decomposition phase (Section

3.2). It does not wait for the receipt of all rect-load-eount messages from other processors.

The hash table, the partition tree and count information is all managed by a local data object

on each processor. These processes together provide a form of distributed data abstraction to the

processes created during the execution of the circuit extractor (see below).

3.2 The Decomposition Phase

Once all the rectangles have been read in and sent to the respective processors, all object responsible

for the entire circuit area is created. The object is named the CircuitExtractor object ill Figure 4.

In Figure 4, an outline of the object used to perform circuit extraction is shown. Briefly,

decomposition continues until the user-defined threshold is reached. This decomposition and the

corresponding creation of objects mirrors the data partitioning performed by the branch office.

When decomposition stops, the RequestRectangles function of the local branch office is queried for

the rectangles in the specified region, with a "reply-to" entry point = Receive Rectangles. If these

4No additional messages are sent to accomplish this. Each processor runs a local deterministic algorithm on the
periodic load information received from the other processors.
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chareCircuitExtractor {

LocalDataType data;

ObjectIDType parentid;

int numchildmsgs;
BorderMsg *firstchildmsg;

entry Decompose: (message CurrentRegion *msg)

{
If ( LoadManager. Continue(msg->region, &decompose))

If (decompose)

Divide msg->region into two equal regions by bisecting its longer sides

Create 2 CurrentRegion messages to represent these regions

CreateChare( Decompose@ Circu_tExtractor, msg 1, pel)

CreateChare(Decompose@ CircuttExtractor, msg2, pe2)
Else

parentid = msg->objectid; numchildmsgs = 0;

LoadManager. Request Rectangles( msg- > region ) ;
}
entry ReceiveRectangles: (message RegionRectangles *msg)
{

ConstructLocalRectangleLists( msg->rectangles, data );

Identify Local Connected Nets netlzst and Transistors tranlist

ProcessTransistors(tranlist, &bordertranlist, &localtranresults, data);

ProcessNets(netlist, &bordernetlist, &localnetresults, data);
Report local transistors

Insert complete nets in nellist in LoadManager:localnets

Create a message bordermsg containing all border net and transistor info.

SendMsg(CircuitExtraeton_MergeRegions, bordermsg, parentid);

}
entry MergeRegions: (message BorderMsg *msg)

{
numchildmsgs = numchildmsgs + 1;

If (numchildmsgs == 2)/* both messages received */

MergeRegions( firstmsg, msg, data);
Identify Local Connected Nets netlist and Transistors tranlist

ProcessTransistors( tranlist, &bordertran[ist, &localtranresults, data);

ProcessNets(netlist, &bordernetlist, &localnetresults, data);
Report local transistors

Insert complete nets in netlist in LoadManager:localnets

Create a message bordermsg containing all border net and transistor info.

SendMsg( CircuzlExtractorff_MergeRegzons, bordermsg, parentid):
Else

firstchildmsg = msg;

Figure 4: The object that implements the circuit extraction algorithm. Some liberties have been

taken with notation for ease of exposition.
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PE 3
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asea-based partitioning

point-based partitioning

PE l to PE 0

Load balancing: leaf sent from PE 1 to PE 2

Initial Distribution:

PE 0:190 rectangles -134

PE 1:510 rectangles +510

PE 2:270 rectangles -54

PE 3:325 rectangles +1

Final Distribution:

PE 0:300 rectangles -24

PE 1:340 rectangles +14

PE 2:330 rectangles +6

PE 3:325 rectangles +1

average : 324 rectangles
Grain size = 150

Tolerance -50 to +50

Figure 5: The dynamic redistribution of objects to load balance the rectangles in Figure 3. Each

node in this decomposition tree represents an extractor object.
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rectangles are not available locally, tile local branch office first determines tile owner processor for

the requested rectangles. It then sends a message requesting the rectangles to the SendRectangles

entry point of its sibling branch office owning the rectangles. The owner branch office sends the

requested rectangles to the RequestRectangles entry point of the requesting object.

A CircuitExtractor object queries the local branch office to determine whether further decom-

position is necessary. This is determined as follows. If the region owned by the Circuitextractor

object (its current region) is not present in the local hash table, further decomposition is deemed

necessary. If the current region falls within the circuit region owned by the local processor, it is

necessary to wait until the local data partitioning phase is complete. This is accomplished with

a do not continue response. The querying process suspends and relinquishes the processor upon

receiving a do not continue response. When local data partitioning is complete, these processes are

woken up and this query is retried. If further decomposition is required, the hash table provides

the processors on which the child process instances are to be created. Recall that the destination

of leaf processes may change due to distribution of rectangles as explained in Section 3.1. Non leaf

processes resulting from the initial area-based partitioning are assigned processors statically. A

non-leaf processes resulting from point-based partioning is created on the same processor on which

its parent resides (see Figure 5).

If the information necessary to answer tile query is available locally, the data distribution hash

table is checked for an entry corresponding to the current region. Recall that only hash table entries

for leaf nodes in the decomposition tree carry rectangles. Hence, if the entry in the hash table has

no rectangles, the process may continue execution, but must decompose the current region further.

This is accomplished by dividing the current region into two equal parts by bisecting its longer

sides. An instance of the CircuitExtractor object is created for each of these regions.

If the current region falls within a region owned by another processor, no further decomposition

is necessary since only leaf nodes in the decomposition tree may cross processor boundaries for

load balancing. The process then requests the rectangles that belong to its current region and

relinquishes the processor. The local data process sends the necessary data and wakes up the

requesting process. Sometimes, it may be necessary for the local data object to forward the query

to a data object on another processor to satisfy the request. In this case, the data object on tile
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processorowningtherectanglessendstherectanglesto therequestingCircuitExtractor object. This

is done transparently as far as the requesting CircuitExtractor object is concerned.

The requesting CircuitExtractorobject is now primed for local processing. Due to the large sizes

of the messages exchanged between processes, processes created during area-based partitioning (see

Figure 5) are mapped onto processors so that a parent CircuitExtractorobject and one of its children

reside on the same processor.

3.3 The Local Extraction Phase

We first describe the local processing performed with the assumption that all nets and devices

computed are completely local to the region. We then discuss how nets and devices touching the

border are handled.

The local processing of a region of tile circuit is very similar to that employed by tile PACE

algorithm. To avoid repetition, we describe it very briefly here, emphasizing the differences between

the two algorithms. A scan line algorithm is used to determine the local connected components and

to identify nets and transistors. This forms tile netlist extraction component of the algorithm. The

output of this component is a list of devices and a list of nets. A device is described as a collection of

device rectangles. For each device, information about the nets connecting to tile different terminals

of the device is also computed. A net is also described as a collection of rectangles. For each net,

information about devices that connect to the net is computed.

For parameter extraction, we use the resistance-capacitance model used in HPEX [23]. Tlle

resistance of a net are converted into a horizontally maximal non overlapping form. This is also

accomplished by a scan line algorithm. This will produce a unique representation of the net. The

horizontally long rectangles are then combined in the vertical direction. Two rectangles that are

sufficiently longer in tile x direction than tile y direction are combined vertically if they abut on

their horizontal edges. Once this is done, for every rectangle R that is longer in one direction than

other rectangles abutting it, R's larger side is cut at the point of intersection with the abutting

rectangles. Two overlapping rectangles resulting from such intersections are merged.

Two rectangles are said to be electrically connected if they abut each other. A rectangle that

connects to only one other rectangle, or atleast three or more t'ectangles is defined to be a knot.

18





Rectanglesassociatedwith theterminalsofdevicesaredefinedto beports. The remaining rectangles

all have exactly two connections each and are defined to be branch rectangles. Every knot and port

is assigned a globally unique number which identifies a point of connection in the circuit. A net

can be thought of as an undirected graph where the knots and ports are nodes that are connected

to each other by edges which represent a chain of one or more branch rectangles.

Resistance calculations are then performed for every edge ill the graph representing a net. The

contribution of the knots and ports are also factored into the calculations. Capacitance calculation is

also performed at the same time. The capacitance of each of the knots and ports is ill'St determined.

The capacitance of each of each edge in the graph is computed by adding tile contributions of all

the branch rectangles on the edge. This capacitance is equally divided between the two end points.

The result of this phase is a distributed RC network for each net. Currently, we do not perform a

node reduction phase on the resulting network as is done in HPEX [23], but these features can be

included easily.

For parallel execution, the maximally connected nets and devices are identified as described

above. Following that, they are subject to the horizontal and vertical transformations and unique

identification of knots and ports. However, both nets and devices may touch a border. All knots

touching a border are marked as border rectangles. Rectangles abutting all incomplete transistor

are also treated like border rectangles. Furthermore, for every edge in the graph representing a

net, if any rectangle on the edge (including the end points) touches the border, all the rectangles

including the end points are marked. Only the marked regions of a net will be sent to a parent

process during the merge phase. Tile resistances and capacitances are computed locally for the

non-marked regions of the net and the rectangles are then discarded.

Resistance and capacitance calculations are computed as before with some exceptions. (a)

Capacitance is not computed for marked rectangles. (b) Resistance is not coml)uted for marked

rectangles. (c) Resistances and capacitances are computed for edges that are not marked even

if one or both of their end points are marked. In this case, the computed capacitance is divided

equally between the end points as described earlier. Resistances are reported immediately using

the unique node identifiers assigned to their end points. Marked end points carry the partially

computed capacitances and their unique node identifiers up tile (tecoml)osition tree until they
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becomeunmarked.The resultsare reportedat this stage.Notethat that sameuniqueidentifiers

will beusedto report the capacitances.(d) Knot rectanglesthat aremarkedbut do not touchthe

borderare taggedasknotsto avoidbeingidentifiedasbranchrectanglesin an ancestorregion.

The markedregionsof a net togetherwith partially computedresistancesandcapacitancesat

the knotsnot touchinga borderaresentup to the parentprocess.The computedvaluesfor the

unmarkedregionsof a netarereportedwith agloballyuniquenumberidentifyingthe net. However.

if thereportedresultscorrespondto an incompletenet, the resultsare taggedasincomplete.

Local transistors,like local nets,poseno problem. Local transistorsare reportedas soonas

theyareencounteredandprocessed.Bordertransistors,however,canposepotentialproblems.For

eachcompletetransistor,uniquenodenumbersidentify thegate,sourceanddrain terminals. One

nodeis createdto representthegateof the transistorandis taggedasa poly port. Two additional

nodesare createdfor the sourceand drain netsof a transistorand taggedas diffusionports. A

rectangleboundingthe channelrectanglesof thetransistoris usedto representthe diffusionports.

This guaranteesthat the relevantsectionsof the sourceand drain netswill be markedasborder

rectanglesif the transistortouchesthe border. The terminalsof a transistorareonly determined

oncea transistoris complete.The channelrectanglesof an incompletetransistoraresentup to

the parentprocesstogetherwith referencesto all netsabutting it. Unlikenets,deviceextraction

resultsareonly reportedoncethedeviceis complete.

Weillustratethis with the helpof the simpleexamplecircuit in Figure6. Figure6(a)describes

anentirecircuit ina regionR0 in a form ready for parameter extraction if executed on one processor.

We consider the case where it has been divided into two regions R1 and R2 (Figure 6(b)) which

are processed by two processors. Figure 6(c) describes the state after local netlist and device

extraction. Transistors 7'1 and T2 are recognized as incomplete on their respective processors. The

determination of the source and drain nets is deferred until the transistor beconles conlplete. The

regions of the nets that are connected to the common border are marked as shown. The resistance

and capacitances for the unmarked regions are then computed. For exanlple, the capacitance

computed and lumped at knot K2 is reported (as belonging to net 2). The resistances between K1

and K2, K2 and K3 etc. are also reported. The partial capacitances computed at knots h'l, K3,

K5 and K6 together with the node identifiers assigned to them are sent up to the parent process
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Figure 6: A simple example illustr,'tting the behavior of the parallel circuit extraction algorithm.
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responsiblefor R0. No resistance or capacitance values are computed for knot K4.

As soon as a leaf process completes local geometric extraction, it processes the local complete

transistors, deposits the local complete nets in a local nets list in the local data object, and sends

a message to its parent containing the border nets and transistors. It then terminates and frees up

any allocated memory.

3.4 The Merge Phase

At the leaf processes of the circuit decomposition tree, four lists of border rectangles are created,

one for each border. For efficiency, these rectangles are chopped to line segments along the border.

Overlapping line segments are then combined to reduce the number of line segments sent up to

a parent process. Note that two adjacent regions will have the same set of line segments on

the common border since rectangles touching the common border are made available to both the

regions. These line segments point to the net or device that they belong to.

When a non-leaf process in the decomposition tree receives one message each from its children, it

is ready to begin processing them. The common border between tile two child regions is determined

and the set of line segments corresponding to the respective borders of the child regions are sorted.

The nets or devices corresponding to the same line segment in the two lists are merged.

Merging two nets will result in one net subsuming another. However, the child process may }lave

reported results corresponding to local parts of these nets using the globally unique identifiers given

to these nets during tile local extraction. Thus, the resulting net creates a list of net identifiers

of all nets it subsumes. A net may subsume more than one other net during the merge process.

This suggests that a list of merged net identifiers need to be created in the general case. It is also

possible for two nets, that have subsumed one or more nets each, to be merged. This means that

corresponding list of merged net identifiers also need to be combined when two nets are merged.

Once the merge operation is completed at an internal node in the decomposition tree, for every net

N resulting from the merge, the list of nets subsumed by N is reported.

For transistors, the list of channel rectangles of the transistors being merged are combined and

carried by the resulting transistor. As mentioned during the local extraction phase, it is necessary

to keep the information relating to tile connecting nets consistent. Titus, in Figure (i. when Net 1

22





subsumesNet 2, Net2 is markedasinvalidandthencarriesa referenceto Net 1,the netsubsuming

it. This is doneby mergingthelist of abuttingnetsfor the two transistors.Forexample,after the

mergeof transistorsT1 and T2 in Figure 6, the resulting transistor T1 will carry references to Net

1, Net 4 and Net 5. This is done by following references to subsumed nets until a reference to a

net that has not been subsumed by another is found. If a transistor becomes complete (i.e., does

not touch a border) following a merge, port nodes are created for the gate, source and drain nets

to enable computation of the capacitances at the terminals of the transistor.

All border line segments of the other borders of the two regions being merged are then combined

as necessary to create the border line segments of the new parent region. Tile nets and devices

pointed to by some of these border segments may have become subsumed by another net; this is

also resolved during the creation of tile border segments of the new region. The subsumed nets and

devices are then released.

The partial nets that are produced as a result of the merge operation are then processed as in

the local extraction phase. Once again, some partial results may be computed, and some rectangles

may be marked as border rectangles. This is identical to the local extraction phase with the caveat

that only the nets involved in the merge operation are processed. Incomplete nets that are sent up

by the child processes, but do not touch the common border, are not processed at this point.

Once processing is complete, local results are reported. Results that correspond to complete

nets and transistors are tagged as such. Other partial results on nets are reported but tagged as

incomplete.

Thus, at each level of the circuit decomposition tree, the partial nets sent up get smaller and

smaller since parts of them become eligible for processing, and the capacitance and resistance

computation for these parts is performed. Only the rectangles of a net marked as border rectangles

are sent up to the parent for further processing.

In Figure 6(d), we see the result of the merge phase on the simple example, h'_, h'_, h'_ and

h'_ denote knots in the child process carrying partial resistance and capacitance information. Note

that net 2 is a disconnected net at this point. A new knot K7 is created after merging nets 1 and 3.

The identifier of the new net is arbitrarily assigned to be one of the two nets. Thus Net 1 subsumes

Net 3 and net 5 subsumes Net 2. Once the merge is complete, the gate, source, and drain nets of
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branch office NetlistManager {

Nets *longnets;

Nets *localnets;

entry lnit:

Initialize longnets and locainets to NIL

entry ReceiveNetLoad: (message LoadMsg *msg)
Receive the current net load on other processors

entry ReceiveNets: (message NetList *msg)
Receive nets that need to be processed and add it to local lists

entry ProcessNet: (message DummyMsg *msg)

{
Process one net in localnets list and report results;

SendMsg( ProcessNet@NetlistManager, msg, MyPeN urn( ));

}

/* other operations visible to other objects */

} /* NetlistManager */

Figure 7: Tile branch office object for distribution and parameter extraction of nets.

the complete transistor T1 are determined. (These nets may not be complete at this stage. Only

the region abutting the transistor has to be complete.} The computed values at knots h'_ and h_.

are reported for net 5 together with the information that nets 1 and 5 have subsumed nets 3 and

2 respectively.

3.5 Dynamic Load Balancing

In Section 3.1, we described the algorithm that is used to effect good data distribution. This.

however, only serves to distribute the effort of local extraction effectively across the available

processors. As described in Section 3.3, the merge algorithm may detect and identify completed

nets at different non-leaf nodes in the circuit partition tree in Figure 5. The device and parameter

extraction of these completed nets can be the most time consuming part of tile execution, especially

if a computationally complex model for resistance/capacitance computation is used.

In the PACE algorithm [4], all completed nets are identified in one phase. They are then
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randomlydistributed acrossthe availableprocessors.In our algorithm, completednetsmay be

identifiedduringthelocalextractionphaseaswellaseverystagein themergephase.Theprocessing

of thesenetsisdoneasandwhentheybecomeavailable.Moreover,in ourapproach,wealsoprocess

'completed'regionsof incompletenetsduring the mergephaseto the extent it is possibleto do

souniquely. As a result,a moreinterestingloadbalancingschemeis used.Figure7 outlinesthe

branchofficeobjectusedto managenetlistsandloadbalancethemacrossthe availableprocessors.

Netsareidentifiedaslargeor smallbasedona user-specifiedvaluefor the numberof rectangles

containedin the net. All small netsare initially retainedon the processoron whichthey were

identifiedin a local nets list in the local data object. One process is created to perform device

and parameter extraction on each long net as and when it is identified and randomly assigned to a

processor.

During execution, on each processor, a count of the total number of rectangles in completed

small nets is maintained. In addition, whenever a long net process is picked up, the number of

rectangles in the long net is added to this count. Each processor periodically broadcasts this count

to all the other processors.

Upon receipt of the rectangle counts on the other processors, each processor independently runs

a simple balancing algorithm to determine the best distribution of rectangles within a predefined

tolerance limit. Note that all processors will arrive at the same distribution since they run a

deterministic algorithm on the same data. This identifies the donor and recipient processors as

was done for data distribution. Care is taken to match donor and recipient processors to ensure

that load distribution is even. A donor processor then sends a set of small nets to the appropriate

recipient processor. Recipient processors do not take any action during the load re-distribution

stage. Any nets received by a recipient object are added to the local nets list ill the local data

object.

An interesting feature of the the ProperCAD environment is that it provides support for priori-

tized execution of objects. To ensure effective load balancing, priorities are assigned to the different

phases of execution. Messages that periodically exchange tile load information (the rectangle count

for extraction) get tile higilest priority to ensure prompt action upon detecting unbalanced load.

Leaf CircuitEztractor objects get the next highest priority. When no leaf objects are available, non-
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Table I: The characteristics of tile benchmark circuits used.

f Circuit Characteristics

Circuit Rectangles I

Prog. Logic Array 25384

Hypercube Router 52893

Multiplier Array 64031
Static Ram 128073

Placement Coprocessor 253556

Nets I Transistors

912 25O8

1744 3476

4227 8384

5136 14296

10266 28494

Table II: Execution times (in seconds) of benchmark circuits on the Network of Sun (SPARC)

workstations. These data are subject to wide variations due to context switching between unix

processes and network traffic. The data here is provided primarily as a proof of concept.

II Network of Sun workstations II

[1 Circuit II Sequential t 1 PEI2 PEs 14 PEs 11

PLA 20.1

H. Router 65.2

M. Array 74.4

S. Ram 107.8

Coprocessor

22.6 12.3 6.8

73.3 56.2 34.5

82.2 71.5 41.2

122.8 100.0 66.2

- - 314.8

leaf objects are picked up. Long nets get priority lower than CircuitExtractor objects but higher

than short nets. In this way, local pools of short nets can be used to maximum effectiveness to

correct any load imbalance that may be recognized.

3.6 Performance

We can now demonstrate the performance of the ProperEXT circuit extractor on a variety of

parallel machines. Table I lists the benchmark circuits used ill the experiment and their charac-

teristics. The benchmarks used were real circuits some of which had been designed as projects for

a graduate course in VLSI design. These circuits are the same as those used in [3, 4] to demon-

strate the performance of tile PACE algorithm. Circuits ranging in size from 25000 rectangles to

250000 rectangles were used. The largest circuit had over 32000 transistors. The circuits were all

in hierarchical CIF format and were flattened before data distribution. Tables II - VI report the
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TableIII: Executiontimes (in seconds) of benchmark circuits on the Encore Multimax.

Circuit

Encore Multimax

II PACEAlgorithmIIProperCADAlgorithmII
II1PEI 8PEs II1PE I 8PEs II

PLA 64.5 10.4

H. Router 196 43 211.8 29.4

M. Array 221 41 238.1 64.2
Ram 305 63 332.9 55.0

Coprocessor 691 137 723.7 124.6

Table IV: Execution times (in seconds) of benchmark circuits on tile Sequent Symmetry.

Sequent Symmetry t1

Circuit

PLA

H. Router

M. Array
S. Ram

CoProcessor

II 1 PE 18 PEs 11

119.9 18.2

409.7 51.7

447.8 96.6

630.5 96.2

1276.7 233.2

Table V: Execution times (in seconds) of benchmark circuits on the NCUBE/2 hypercube.

11 NCUBE/2 (hypercube) II
II Circuit

PLA

H. Router

M. Array

S. Ram

CoProcessor

l[ 4 PEs I 8 PEst 16 PEs

25.7 16.3 8.0

87.2 47.7 38.2

- 97.1 84.3

- - 41.8

32PEs 64 PEs

6.8 4.4

34.0 34.7

80.5

34.0 28.6

59.7 48.9
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Table VI: Execution times (in seconds) of benchmark circuits on the Intel i860 hypercube.

Intel i860 (hypercube)

Circuit I11 eEl 2 PEs 14 PEs ]8 PEs II

PLA 13.0 6.6 3.7 2.4

H. Router 45.7 20.1 11.3 6.2

M. Array 51.0 31.1 16.2 20.1

S. Ram - 37.7 19.2 12.6

CoProcessor - - - 27.7

execution time in seconds on all these circuits. The reported times exclude the time for input and

output. The grain size used for all the circuits was 500: i.e. the circuits were partitioned into

regions containing 500 or fewer rectangles.

In Table II we report the performance of the ProperEXT circuit extractor oil a network of 4 Sun

Sparc 1 workstations each with 24MB of memory. Only workstations with identical configurations

were used for the experiment. Only 4 workstations with the above configuration (and the requisite

memory) were available for the experiment. Data is also presented in Table III for an 8-processor

Encore 510 Multimax with XPC processors running UMax 4.3 operating system with 64MB of

main memory. In Table IV, the results of running the extractor on a Sequent Symmetry with 8

Intel 386 processors and 32MB of memory are presented s. Table V provides data on a 64-processor

NCUBE 2 at Sandia National Laboratories with 4 MB per processofi. It is important to emphasize

that the circuit extractor ran unchanged on all these machines.

We now consider the performance on each of these machines. First, modest speedups were

evident on the network of Sun workstations. Due to context switching by tile Sun operating system,

network traffic due to page faults and other workstations on the network, wide variations in the

performance of the extractor were observed. Furthermore, in the presence of context switching

between unix processes, the execution time across different workstations on tile network was quite

SWe thank Argonne National Laboratories for access to the Sequent Symmetry and tile Intel i860 hypercube. Tile
Symmetry had 26 processors. However, the presence of other users in addition to the limited available memory made
it impossible to use more than 8 processors for our experiment.

SThe NCUBE 2 at Sandia National Laboratories has 1024 nodes. However, due to heavy use, only 64 nodes were

available at the time of running the experiment.
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inconsistent. As a result, we present the results in Table II more as a proof of concept: that a

network of suns can be used as a parallel machine to distribute the computation. Column 2 in

Table II provides the time taken by a uniprocessor implementation of PACE [4]. In Column 3,

the time taken by the ProperEXT extractor on one processor is presented. The difference between

Column 3 and Column 2 represents the overhead of parallelization in the ProperEXT extractor.

As can be seen by these two columns, the overhead of parallelization was approximately 10-12%.

(As mentioned earlier, this overhead can be controlled by the programmer by specifying the grain

size appropriately.)

In Table III, we compare the results of the ProperEXT circuit extractor with the PACE circuit

extractor [4] on the Encore Multimax. In spite of the fact that the PACE extractor was designed

and programmed specifically for the Encore Multimax, the ProperEXT extractor is marginally

slower on one processor, but significantly faster on 8 processors for 4 out of 5 circuits. Data for

the PLA circuit was not available for the PACE extractor. The ProperEXT extractor does not

perform as well as the PACE extractor on the Multiplier Array circuit. This was observed to be

due to the completion of a single large net at the root of the decomposition tree. Since few other

nets are available for balancing the load, the processor performing parameter extraction on this net

is the sole active processor at this time. In the PACE algorithm, no processing is done until all the

nets are complete. This makes it possible to distribute the load across processors more effectively

in this example. This approach proves significantly costlier on the other circuits, however.

In Tables V and VI, we demonstrate the performance of the ProperEXT extractor on the

NCUBE 2 and Intel i860 hypercubes. Again, with the exception of the Multiplier Array circuit,

the benchmark circuits exhibit good speedups on all circuits.

3.7 Varying the Grain Size

An important question that needs to be addressed is the importance of the choice of grain size.

How does the programmer determine the right grain size to be chosen. In Figures 8 and 9 we study

the effect of varying the grain size on the execution time. Two experiments are reported: one on a

shared memory machine: a Sequent Symmetry with 8 Intel 386 processors and a message passing

machines: an Intel i860 hypercube with 8 processors.
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Table VII: Execution times (in seconds) of ProperTEST sequential test pattern generator running

ISCAS89 sequential benchmark circuits on a network of Sun Sparc workstations

Network of Sun workstations (Distributed Proe essing)

II Circuit [1 #PE s It Time/Fit

1 15 311.1 3.0 2.1

s386 2 15 148.0 1.9

4 15 89.4 1.8

8 15 39.2 1.2

1 2 42.2 3.9 1.9

s713 2 2 23.3 2.7

4 2 11.1 1.8

8 2 7.1 1.2

1 2 8.8 13.2 1.8

s1196 2 2 6.2 10.4

4 2 3.7 6.9

8 2 1.7 4.1

1 2 18.6 15.8 2.4

s1238 2 2 11.5 10.9

4 2 7.0 7.4

8 2 3.7 5.2

1 1 1384.2 200.2 69.4

s5378 2 1 899.6 113.8

4 1 523.3 72.4

8 1 298.7 49.6

[] T.Gen. ] F.Sim. [ Overhead II Coverage Efficiency #Vectors

81.8

81.8

81.8

81.8

81.6

81.9

81.9

81.9

99.8

99.8

99.8

99.8

94.7

94.7

94.7

94.8

70.6

70.5

72.3

68.6

100

100

100

100

97.6

98.5

98.5

98.3

100

100

100

100

100

100

100

100

72.1

72.0

71.8

70.2

333

293

361

369

182

204

236

246

365

387

380

370

383

374

398

406

849

929

950

1095

#Procs.

1713

1483

1525

1307

720

725

735

728

1243

1243

1243

1243

1363

1362

1363

1362

4604

4604

4604

4604

We varied the point grain size (see Figure 3) from 25 to 25000. As the grain size is increased,

the amount of parallelism exploited is reduced. For very small grainsizes, (i.e. < 100 rectangles per

region), the execution time is quite high, indicating a high overhead of parallelization. However, as

can be seen, a wide range in the grain size is observed for which the execution time exhibits little

or no change. Thus, any choice of grain size within this wide range is suitable for executing the

program.

4 Other Applications

Several other applications have already been developed as part of tile ProperCAD project. They

include test pattern generation for sequential circuits [18], combinational logic synthesis [5] and

standard cell placement. Currently, all these applications have also been developed using the

CHARM environment. As soon as the ProperCAD C + + environment is ready, these applications

will all be reimplemented in that environmemt.
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Table VIII: Execution times (in seconds) of the ProperTEST sequential test pattern generator

running ISCAS89 sequential benchmark circuits on the Sequent Symmetry.

Sequent Symmetry (Shared Memory MIMD)

CircuitII#PEs IITime/Fit IIT.Gen.[ V.Sim.[ OverheadII Coverage
1 15 1164.4 15.1 20.4 78.4

s386 4 15 413.8 9.1

8 15 236.7 9.8

16 15 143.5 5.5

1 1 41.6 25.9 5.7

s713 4 1 12.7 11.8

8 1 7.2 8.6

16 1 4.6 5.8

1 1 46.2 72.0 9.0

s1196 4 1 12.5 30.0

8 1 6.7 19.2

16 1 3.9 11.7

1 1 85.3 87.3 9.3

s1238 4 1 23.2 35.8

8 1 12.2 21.0

16 1 7.7 14.8

1 1 1648.4 1078.7 462.27

s5378 4 1 425.7 320.9

8 i 239.3 245.7

12 i 181.2 198.7

Efficiency #Vectors It #Procs.

78.6

78.9

78.9

81.9

81.9

81.9

81.9

99.6

99.8

99.8

99.8

94.5

94.5

94.5

94.6

66.1

65.7

65.9

65.4

96.6

96.9

97.1

97.1

95.9

96.0
95.9

95.7

99.8

100

100

100

99.0

99.0

99.0

99.0

67.2

66.8

67.0

66.5

255

330

399

403

206

246

282

300

369

384

398

412

376

383

394

442

769

769

1090

1141

1986

2374

2529

2621

582

582

582

582

1303

1305

1310

1331

1356

1356

1356

1356

4604

4604

4604

4604
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Table IX: Execution times (in seconds) of the ProperTEST sequential test pattern generator running

ISCAS89 sequential benchmark circuits on the Intel i860 hypercube.

Intel i860 hypercube (Message Passing MIMD)

[ICircuitII#PEs IITime/Fit IIT.Ce.. I F.Sim.] Overhead
1 15 184.4 2.7 1.8

s386 2 15 87.0 1.9 0.7

4 15 49.0 1.6 0.3

8 15 28.8 1.3 1.8

1 2 27.0 3.7 1.5

s713 2 2 15.5 2.4 1.0

4 2 8.8 1.2 1.7

8 2 6.6 1.0 2.0

1 1 5.5 10.1 0.8

s1196 2 1 3.3 7.6 0.9

4 1 1.5 4.5 0.7

8 1 0.9 3.2 0.4

1 1 11.7 12.3 1.3

s1238 2 1 6.3 8.7 1.0

4 1 4.1 5.4 0.8

8 1 2.2 3.7 0.6

1 5 6016.5 184.8 140.9

s5378 2 5 3548.6 97.4 86.7

4 5 1748.8 59.3 51.3

8 5 901.7 38.6 84.1

Coverage Efficiency #Vectors

81.8

81.8

81.8

81.8

81.9

81.9

81.9

81.9

99.8

99.8

99.8

99.8

94.7

94.7

94.7

94.8

73.4

71.6

72.5

70.8

100

100

100

100

98.8

98.8

98.8

98.8

100

100

100

100

100

100

100

100

75.3

73.4

74.3

72.7

330

306

370

418

217

199

213

221

365

386

362

394

383

385

387

406

985

932

1009

1228

H #erocs.
1783

1629

1673

1733

751

766

761

787

1243

1243

1243

1243

1369

1368

1356

1356

13233

13727

13511

13468

In Tables VII-X, we provide the performance of ProperTEST, the sequential test pattern gen-

erator based on the PODEM search algorithm on a variety of parallel MIMD machines. The

benchmark circuits used were the standard ISCAS 89 sequential circuits. For reasons of space,

results on a subset of the entire benchmark suite are presented.

In Tables XI-XIII we present the performance of ProperSYN, a portable combinational logic

synthesis algorithm that is based on the transduction method. The benchmark circuits used were

the standard MCNC combinational circuits. Once again, like the other CAD applications, the

programs run unchanged on all the target machines.

Finally, in Tables XIV-XVI we present the performance of ProperPLACE, a portable parallel

algorithm for standard cell placement using simulated annealing. The parallel algorithm is built on

top of TimberWolf 6.0, one of the most widely used sequential programs for standard cell placement

based on simulated annealing. The results reported are the best for standard cell placement among

parallel algorithms that preserve both the quality of the results and yet obtain speedups on parallel
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Table X: Execution times (in seconds) of the ProperTEST sequential test pattern generator on

ISCAS89 sequential benchmark circuits on the Encore Multimax.

Encore Multimax (Shared Memory MIMD)

[[ Circuit II #PEs ][ Time/Fit I] W.Gen. I F.Sim. [Overhead Coverage Efficiency

1 15 740.8 11.5 17.7 81.2 99.5

s386 2 15 388.8 7.9 11.9

4 15 230.3 5.4 5.7

8 15 138.8 4.9 1.6

1 2 53.9 17.0 9.2

s713 2 2 30.4 9.2 5.2

4 2 22.5 7.6 1.0

8 2 12.9 5.7 0.2

1 2 27.5 45.2 4.7

s1196 2 2 14.3 30.5 3.4

4 2 7.54 18.5 2.6

8 2 4.6 12.8 3.4

1 2 56.2 56.2 5.8

s1238 2 2 31.7 39.6 0.7

4 2 17.1 22.7 1.6

8 2 9.2 14.8 1.4

1 2 2879.8 913.0 771.7

s5378 2 2 1681.4 533.4 506.2

4 2 884.1 283.4 256.9

8 2 479.9 217.1 143.5

80.5

81.0

80:5

85.7

85.7

85.7

85.7

99.8

99.8

99.8

99.8

94.7

94.6

94.5

94.6

68.8

70.6

70.5

68.8

98.7

99.0

98.7

97.2

97.2

97.2

97.2

100

100

100

100

99.7

99.6

99.6

99.6

70.3

72.2

72.0

70.2

#Vectors

316

322

375

370

206

204

241

272

360

364

367

404

375

392

377

414

985

1057

998

1395

#Procs. [[

2350

2431

2628

2907

813

826

910

934

1243

1243

1243

1243

1356

1356

1356

1356

13339

13875

14346

16030
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Table XI: Performance of the ProperSYN combinatorial logic synthesis algorithm on MCNC bench-

mark circuits on a network of SUN workstations.

CKT

5xpl

b9

bw

fSlm

misexl

misex2

rd73

rd84

sao2

vg2

apex7

1 Processor

Run Time Speedup

102.99 1.0

121.25 1.0

468.19 1.0

180.97 1.0

41.68 1.0

109.00 1.0

387.74 1.0

4792.74 1.0

525.47 1.0

735.72 1.0

2272.41 1.0

2 Processor

Run Time Speedup

55.49 1.86

69.19 1.75

264.80 1.76

118.07 1.53

22.66 1.84

60.83 1.79

251.32 1.54

2476.32 1.94

284.74 1.84

400.70 1.84

1311.86 1.73

4 Processor

Run Time Speedup

31.97 3.22

38.51 3.15

172.58 2.71

72.24 2.51

13.92 2.99

35.85 3.04

129.42 3.00

1279.05 3.75

172.97 3.04

225.16 3.27

595.02 3.82

machines.

5 Summary

We have developed an environment for the portable object-oriented parallel execution of CAD

algorithms. The main objectives of this research have been to make automatic porting of parallel

software feasible and practical, and exploit the current and future advances in sequential CAD

algorithms. As mentioned in the introduction, since inception, the ProperCAD project (see Figure

1) is designed to be completed in two phases. In the first phase, we are designing portable parallel

algorithms for a large set of CAD applications using CHARM. The second phase of the project

will involve the design and implementation of a run-time support system for portable parallel

programming in C++. This system, although inspired by CHARM, will be tailored specifically for

CAD applications. This will make the programming environment truly object-oriented and will

support features like inheritance and classes. The ProperCAD applications will then be rewritten

and ported onto the new C++ platform. It should be noted that the parallel algorithms in the

ProperCAD project are being designed around existing sequential algorithms and extensively reuses

existing sequential code.

We have demonstrated the feasiblity of this approach through several applications, namely, flat

circuit extraction, test generation for sequential circuits, combinational logic synthesis and stan-
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TableXII: Performanceof theProperSYNcombinatoriallogicsynthesisalgorithmonMCNCbench-
markcircuitson the Intel i860hypercube.

CKT

5xpl

b9

bw

f51m

misexl

misex2

rd73

rd84

sao2

vg2

apex7

apex6

duke2

misex3c

1 Processor
Run Time Speedup

60.24 1.0

70.23 1.0

217.54 1.0

89.92 1.0

21.43 1.0

64.68 1.0

233.63 1.0

2381.77 1.0

356.66 1.0

390.08 1.0

1478.43 1.0

15418.68 1.0

12190.12 1.0

15257.09 1.0

2 Processor

Run Time Speedup
32.67 1.84

33.12 2.12

122.54 1.77

57.55 1.56

18.41 1.17

37.86 1.71

107.39 2.17

1190.08 2.00

197.76 1.80

224.59 1.74

884.24 1.67

7700.81 2.00

6371.77 1.91

7842.69 1.95

4 Processor

Run Time Speedup
18.61 3.24

21.90 3.20

77.62 2.80

37.22 2.42

13.45 1.60

22.83 2.83

66.15 3.53

563.25 4.22

108.92 3.27

112.09 3.48

461.96 3.2O

3555.27 4.34

3248.30 3.75

4074.12 3.75

8 Processor

Run Time Speedup

12.80 4.70

15.42 4.55

42.10 5.17

21.11 4.26

11.73 1.80

11.55 5.60

29.13 8.02

308.66 7.72

50.04 7.13

53.00 7.36

222.94 6.63

1842.22 8.37

1686.32 7.23

1907.11 7.98

Table XIII: Performance of the ProperSYN combinatorial logic synthesis algorithm on MCNC

benchmark circuits on the Encore Multimax.

CKT

5xpl

1 Processor

Run Time Speedup

1.0

2 Processor
Run Time Speedup

1.45177.62 122.52

4 Processor 8 Processor

Speedup

5.02

b9 231.24 1.0 123.35 1.87 5.75

bw 755.39 1.0 409.75 1.84 6.98

f51m 296.07 1.0 184.32 1.60 4.24

misexl 70.56 1.0 40.27 1.75 6.31

1.0

1.0

212.96misex2 108.11

410.88

3998.18

659.78

822.33

769.28rd73

1.97

1.87

2.29

1.77

1.67vg2

9159.49rd84

sao2 1174.38

1373.67

1.0

1.0

1.0

Run Time Speedup
57.20 3.10

57.82 3.99

198.64 3.80

101.76 2.91

22.98 3.07

60.70 3.51

207.46 3.54

2390.73 3.83

315.15 3.73

392.75

1341.27

14271.42

12142.03

13721.43

Run Time

35.30

40.21

108.21

69.84

11.18

36.15

110.92

1378.20

152.03

3.50 188.59

3.63 727.92

3.79 7241.64

3.30

3.66 7011.62

5.90

6.93

6.64

7.72

7.28

apex7 4868.01 1.0 2383.75 2.04 6.69

apex6 54062.65 1.0 26976.26 2.00 7.47

duke2 40138.20 1.0 25390.33 1.58

misex3c 1.050236.75 1.9026412.00 7.16
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Table XIV: Performance of the ProperPLACE algorithm for standard cell placement on a network

of Sun workstations.

II 1PE II 2PEs II 4PEs II 8PEs II
Circuits Wire Time II Wire Time Wire Time Wire Time II

II II

Length (see.) Length (sec.) Length (sec.) Length (sec.)
s298 32120 780 32274 458 32395 282 32938 194

s420 38451 814 38480 525 38905 270 39032 201
fract 22067 640 22708 426 22592 213 23050 152

primary 372561 914 373034 605 381830 351 390743 241

primary I]

Table XV: Performance of the ProperPLACE algorithm for standard cell placement on the Encore

Multimax.

Circuits

s298
s420
fract

primary

I1 1PE II 2PEs II 4PEs II SPEs ]I
Wire Time Wire Time Wire Time Wire Time

Length (sec.) Length (sec.) Length (sec.) Length (sec.)

32052 1538 32603 899 32842 480 33106 317
38627 1678 39083 969 39130 559 39852 373

21575 1419 21692 857 21854 489 22540 368

375870 2054 376991 1194 380492 760 386403 503

primary [[

dard cell placement. New algorithms for global routing, fault simulation and behavioral simulation

are currently under development. All the applications exhibit good speedups on shared memory

machines including an Encore Multimax and a Sequent Symmetry, message passing machines in-

cluding an NCUBE 2, an Intel i860 hypercube and a network of Sun workstations. This is significant

especially given that the applications were all executed unchanged on all the above machines.

When the ProperCAD environment is available on a new architecture, say the Intel Paragon

multiprocessor, these algorithms will not need to be rewritten, unlike most prior algorithms. It is

only necessary to port the underlying programming platform (which itself is largely portable with

the exception of a small machine specific component).

All these applications are being developed on a parallel object-oriented platform, using a coarse-

grained data-flow style of execution. In all cases, the algorithms are being interfaced with unipro-

cessor implementations of the respective applications. In circuit extraction, for example, sequential

modules were used to perform local geometric extraction and device and parameter extraction.
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Table XVI: Performance of the ProperPLACE algorithm for standard cell placement on the Intel

i860 hypercube.

Circuits

s298

s420

fraxt

primary

II 1 PE II 2 Prs [I 4 Prs H 8 PEs

Wire Time Wire Time Wire Time Wire Time

Length (sec.) Length (sec.) Length (sec.) Length (sec.)

32512 191 32603 120 32969 68 33106 47

38066 288 37960 178 38943 103 39836 73

22717 534 22904 322 23010 190 23109 137

373905 769 374042 447 381839 307 387592 198

primary [[

The parallel algorithm was primarily concerned with the decomposition of the circuit into regions

that could be processed in parallel, and the merging of these regions together. In cell placement,

we have interfaced the parallel algorithm with TimberWolf 6.0, a state-of-the-art widely used cell

placement program.

We believe that this multilevel separation of a parallel run-time system, a parallel library, a

parallel algorithm and a sequential algorithm with well-defined interfaces between them, as outlined

in Figure 1, is the most efficient way to develop parallel CAD algorithms. This permits the experts

in each of these different areas to concentrate on their fortes. An environment such a ProperCAD

is best written by an expert in parallel programming who has intimate knowledge about the target

machines. The parallel algorithms can then be developed with the constraint that the algorithms

are expressed using the ProperCAD environment. Finally, experts in the area of circuit extraction,

test generation, logic synthesis, cell placement, etc. should be designated the responsibility off

developing efficient sequential algorithms for their respective problems. We constrain them to

express their algorithms in a modular fashion: a desirable requirement for program design and

maintenance in any case. The ProperCAD environment serves to bridge the effort in these various

different areas of specialization.

Work is also under way to expand the set of target architectures for the ProperCAD envi-

ronment. We are awaiting access to parallel machines like tlle Intel Paragon and the Thinking

Machines CM-5 to initiate the port to these machines.
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parallel-sequential interface• This will permit the parallel algorithm to benefit from future developments in

sequential algorithms.
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19. continued

We describe one CAD application that has been implemented as part of the ProperCAD project: liar

VLSI circuit extraction. The algorithm, its implementation, and its performance on a range of parallel

machines are discussed in detail. It currently runs on an Encore Multimax, a Sequent Symmetry, Intel

iP_qC/2 and i860 hypercubes, a NCUBE 2 hypercube, and a network of Sun Sparc workstations. We also

pz-ovide performance data for other applications that have been developed: namely test pattern generation

for sequential circuits, parallel logic synthesis and standard cell placement.
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